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1 Introduction

Motivated by the recent notes on polynomial bounds [1, 2], I would like to suggest
that sometimes a polynomial application is only appropriate, or of interest, when
all the roots are real, in which case a much tighter bound is generally possible.
With this setting in mind this note describes an upper bound having the property
of being exact in the case of 𝑛 − 1 multiple roots.

Definition 1. Let 𝑃 (𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + . . . + 𝑎0 be a polynomial of
degree 𝑛 with real coefficients (𝑎𝑛 ̸= 0). If 𝑥 is a complex root of 𝑃 (𝑥) = 0, then
let |𝑥| denote the modulus of 𝑥.

Definition 2. Let 𝑃 (𝑥) be differentiated 𝑛 − 2 times to yield a quadratic with
roots given by −𝑎𝑛−1

𝑛𝑎𝑛
± Ω, where [3]

Ω2 =
𝑎2

𝑛−1
𝑛2𝑎2

𝑛

− 2𝑎𝑛−2

𝑛(𝑛 − 1)𝑎𝑛
. (1)

Significance of Ω

Since Ω is a factor of the 𝑥𝑛−2 coefficient of the reduced form of a polynomial,
it is also a factor of the elementary symmetric function of the roots Σ𝑥1𝑥2. For
example, by rearranging (1) and letting 𝑎𝑛−1 = 0, we obtain

𝑎𝑛−2

𝑎𝑛
= −𝑛(𝑛 − 1)

2 Ω2 ≡ −
(︁𝑛

2

)︁
Ω2 ≡ Σ𝑥1𝑥2. (2)

2 Polynomial bound

Some insight regarding the general case is afforded by the polynomials of degree
less than five having all real roots, since the maximum absolute value of any root
of the reduced linear, quadratic and cubic equations are respectively 0 × Ω, 1Ω,
and 2Ω. For example, the roots of a reduced cubic with three real roots can be
expressed in the form 2Ω cos(𝜃 + 2𝑘𝜋/3), (𝑘 = 0, 1, 2) [4], and hence their upper
absolute bound is 2Ω. This heuristic therefore suggested the following theorem.

1This minor revision (March 2017) corrects some typographic and other minor points, and
includes some explanatory footnotes. The original published version can be downloaded from
www.jstor.org/stable/23248527
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Theorem. If all the roots 𝑥 of 𝑃 (𝑥) = 0 are real, then all the roots lie in the
range bounded by −𝑎𝑛−1/(𝑛𝑎𝑛) ± (𝑛 − 1)Ω. For a reduced equation (𝑎𝑛−1 = 0)
this is equivalent to |𝑥| ≤ (𝑛 − 1)|Ω|.

Proof. With no loss of generality let 𝑃 (𝑥) be a reduced polynomial (𝑎𝑛−1 = 0)
with roots 𝑥𝑖 (𝑖 = 1, . . . , 𝑛). We distinguish two cases as follows:
1. Roots all equal: If 𝑃 (𝑥) has a root of multiplicity 𝑛, then 𝑃 (𝑥) ≡ 𝑥𝑛 = 0, and
hence 𝑥 = Ω = 0, which is consistent with the assertion |𝑥| ≤ (𝑛 − 1)|Ω|.
2. All other cases: Let 𝑥 be any root, with multiplicity 𝑟 (1 ≤ 𝑟 < 𝑛), of the
reduced form 𝑃 (𝑥). Let the remaining 𝑛 − 𝑟 roots have arithmetic mean 𝑔 and
be denoted as 𝑥𝑗 = {𝑔 + 𝛿𝑗 : Σ𝛿𝑗 = 0 : 𝑗 = 1, 2, . . . , 𝑛− 𝑟}. Since 𝑃 (𝑥) is reduced,
then

𝑟𝑥 = −(𝑛 − 𝑟)𝑔. (3)
In order to express 𝑥 in terms of Ω we now proceed to determine the elementary

symmetric function Σ𝑥1𝑥2. It is convenient to distinguish three sets of terms in
Σ𝑥1𝑥2 namely: 𝐴, the

(︀
𝑟
2
)︀

terms containing 𝑥 only; 𝐵, the 𝑟(𝑛 − 𝑟) terms which
contain both 𝑥 and (𝑔 + 𝛿𝑗) factors; and 𝐶, the remaining

(︀
𝑛−𝑟

2
)︀

terms which
contain only (𝑔 + 𝛿𝑗) factors, as follows:

𝐴 =
(︁𝑟

2

)︁
𝑥2 = 𝑟(𝑟 − 1)

2 𝑥2 = (𝑟 − 1)(𝑛 − 𝑟)2𝑔2

2𝑟
.

𝐵 = 𝑟 {𝑥(𝑔 + 𝛿1) + . . . + 𝑥(𝑔 + 𝛿𝑛−𝑟)} ,

= 𝑟𝑥 {(𝑔 + 𝛿1) + . . . + (𝑔 + 𝛿𝑛−𝑟)} ,

= {−(𝑛 − 𝑟)𝑔} {(𝑛 − 𝑟)𝑔 + 𝛿1 + . . . + 𝛿𝑛−𝑟} .
But Σ𝛿𝑗 = 0, so this reduces to 𝐵 = −(𝑛 − 𝑟)2𝑔2.

𝐶 = (𝑔 + 𝛿1)(𝑔 + 𝛿2) + (𝑔 + 𝛿1)(𝑔 + 𝛿3)
+ . . . + (𝑔 + 𝛿𝑛−𝑟−1)(𝑔 + 𝛿𝑛−𝑟),

=
{︀

𝑔2 + 𝑔(𝛿1 + 𝛿2) + 𝛿1𝛿2
}︀

+
{︀

𝑔2 + 𝑔(𝛿1 + 𝛿3) + 𝛿1𝛿3
}︀

+ . . . +
{︀

𝑔2 + 𝑔(𝛿𝑛−𝑟−1 + 𝛿𝑛−𝑟) + 𝛿𝑛−𝑟−1𝛿𝑛−𝑟

}︀
,

=
(︂

𝑛 − 𝑟

2

)︂
𝑔2 + 𝑔 {(𝛿1 + 𝛿2) + (𝛿1 + 𝛿3)

+ . . . + (𝛿𝑛−𝑟−1 + 𝛿𝑛−𝑟)} + Σ𝛿1𝛿2,

=
(︂

𝑛 − 𝑟

2

)︂
𝑔2 + 𝑔(𝑛 − 𝑟 − 1)Σ𝛿𝑗 + Σ𝛿1𝛿2.

But Σ𝛿𝑗 = 0, so 𝐶 reduces to

𝐶 =
(︂

𝑛 − 𝑟

2

)︂
𝑔2 + Σ𝛿1𝛿2.

Summing these expressions for A, B and C we have

Σ𝑥1𝑥2 = 𝐴 + 𝐵 + 𝐶

= (𝑟 − 1)(𝑛 − 𝑟)2𝑔2

2𝑟
− (𝑛 − 𝑟)2𝑔2

+ (𝑛 − 𝑟)(𝑛 − 𝑟 − 1)𝑔2

2 + Σ𝛿1𝛿2,
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which simplifies to

Σ𝑥1𝑥2 = −𝑛(𝑛 − 𝑟)𝑔2

2𝑟
+ Σ𝛿1𝛿2. (4)

Now from (3) we have 𝑥 = −(𝑛 − 𝑟)𝑔/𝑟, and so (4) is equivalent to

Σ𝑥1𝑥2 = −𝑥2 𝑟𝑛

2(𝑛 − 𝑟) + Σ𝛿1𝛿2.

But, from (2) we have Σ𝑥1𝑥2 = −
(︀

𝑛
2

)︀
Ω2, and hence we can write

𝑥2 𝑟𝑛

2(𝑛 − 𝑟) − Σ𝛿1𝛿2 =
(︁𝑛

2

)︁
Ω2,

which is equivalent to

𝑥2 = (𝑛 − 1)(𝑛 − 𝑟)
𝑟

Ω2 + 2(𝑛 − 𝑟)
𝑟𝑛

Σ𝛿1𝛿2. (5)

If the roots of 𝑃 (𝑥) are all real then, since the maximum absolute value of 𝑥,
say 𝑥𝑚𝑎𝑥, is associated with the condition 𝑟 = 1 and the remaining 𝑛 − 1 roots
all being equal (that is, Σ𝛿1𝛿2 = 0), (5) reduces to

(𝑥𝑚𝑎𝑥)2 = (𝑛 − 1)2Ω2. (6)

If 𝑟 > 1 then (𝑛 − 𝑟)/𝑟 < 𝑛 − 1 and also Σ𝛿1𝛿2 ≤ 0 (see Lemma), and hence it
follows from (5) that

𝑥2 < (𝑛 − 1)2Ω2, (7)
irrespective of whether the remaining 𝑛 − 𝑟 roots are equal (Σ𝛿1𝛿2 = 0) or not
(Σ𝛿1𝛿2 < 0). It follows from (6) and (7), therefore, that if 𝑥 is any root of a
reduced univariate polynomial having all real roots then

|𝑥| ≤ (𝑛 − 1)|Ω|, (8)

as required.

Lemma. If 𝑠𝑖 {∈ R : 𝑖 = 1, 2, . . . , 𝑛} are independent rational values such that
Σ𝑠𝑖 = 0, then Σ𝑠1𝑠2 ≤ 0.

Proof : Since (Σ𝑠𝑖)2 ≡ Σ𝑠2
𝑖 + 2Σ𝑠1𝑠2, if Σ𝑠𝑖 = 0 then 2Σ𝑠1𝑠2 = −Σ𝑠2

𝑖 . Since
Σ𝑠2

𝑖 ≥ 0 it follows that Σ𝑠1𝑠2 ≤ 0.

Remark. If the polynomial formed by the remaining 𝑛 − 𝑟 roots of 𝑃 (𝑥) be
denoted as 𝑄(𝑥), then the 𝛿𝑗 can be regarded as the roots of the reduced form
of 𝑄(𝑥) and hence it follows from (2) that

Σ𝛿1𝛿2 = −
(︂

𝑛 − 𝑟

2

)︂
Ω2

𝑄.

Consequently (5) can be expressed more generally as(︂
𝑥 + 𝑎𝑛−1

𝑛𝑎𝑛

)︂2
= (𝑛 − 1)(𝑛 − 𝑟)

𝑟
Ω2

𝑃 − (𝑛 − 𝑟)2(𝑛 − 𝑟 − 1)
𝑟𝑛

Ω2
𝑄, (9)

where 𝑥 is any root (real or complex) of 𝑃 (𝑥) and the subscripts denote the
parent polynomial (see Example).
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Example

Consider 𝑃 (𝑥) ≡ 𝑥5−7𝑥3−2𝑥2+12𝑥+8 = 0 (which has roots: −2, −1, −1, +2, +2)
for which (1) gives Ω2 = 7/10, and (8) gives |𝑥| ≤ 3·4.

Note that three of the roots (−2, +2, +2) have the absolute maximum value
of 2. If we allocate 𝑥 = −2 then we have 𝑛 = 5, 𝑟 = 1, 𝑔 = 0·5, which are
consistent with (3). The 𝛿𝑗 are therefore 3/2, 3/2, −3/2, −3/2, giving Σ𝛿𝑗 = 0
and Σ𝛿1𝛿2 = −9/2, consistent with (5). From the perspective of (9) we have
𝑎𝑛−1 = 0, 𝑄(𝑥) ≡ 𝑥4 − 2𝑥3 − 3𝑥2 + 4𝑥 + 4 = 0, Ω2

𝑄 = 3/4 and Ω2
𝑃 = 7/10, which

are consistent with 𝑥 = −2.
Alternatively, if we allocate 𝑥 = +2 (double root), then 𝑛 = 5, 𝑟 = 2,

𝑔 = −4/3, which are consistent with (3) and lead to values consistent with (5).
As regards (9) we have 𝑎𝑛−1 = 0, 𝑄(𝑥) ≡ 𝑥3 + 4𝑥2 + 5𝑥 + 2 = 0, Ω2

𝑄 = 1/9 and
Ω2

𝑃 = 7/10, which are consistent with 𝑥 = +2.

3 Interpretation

When all the roots of 𝑃 (𝑥) are real, we can envisage the position vectors of the
𝑛 roots of the reduced equation as radiating symmetrically in R𝑛−1 from the
origin, each with radius (𝑛 − 1)|Ω|; the roots of the reduced equation being the
orthonormal projection of the ends of the root vectors onto the real axis.

For example, we regard the root vectors of a three-real-root reduced cubic as
lying symmetrically in the xy-plane3, their ends lying on the circumference of
a circle of radius 2|Ω| [4]. For the higher polynomials we imagine the position
vectors directed symmetrically towards the surface of a hypersphere of radius
(𝑛 − 1)|Ω|.

If there are 𝑛 − 1 equal roots, then symmetry considerations require the
position vector of the remaining root to coincide with the real axis, and hence
its absolute value equals the radius, and the bound is therefore exact 4.

A consequence of this is that the bound is exact for all quadratics, irrespective
of whether the roots are real or complex, since for equations of degree 2 then
𝑛 − 1 = 1. In other words, whichever root of a reduced quadratic is allocated as
𝑥 the remaining root is always an instance of 𝑛 − 1 equal roots.

4 Comparison with other methods

Useful overviews of other methods are [5, 6, 7]. As might be expected, methods
which give tighter bounds (Term Grouping bound, Newton bound) are signif-
icantly more computationally intensive than those generating wider bounds
(Cauchy bound, modified Cauchy bound, Maclaurin bound, Negative Inverse
Sum bound). The last two bounds, which are generally better than the Cauchy
bounds, are well detailed in [8]. These last four bounds are defined as follows:

If 𝑓(𝑥) is a monic polynomial with coefficients 𝑎0, . . . , 𝑎𝑛, and 𝑁 is
the absolute value of the most negative coefficient, then the upper
bounds for all the real roots of 𝑓(𝑥) are given by [5]:

3(March 2017): I thank Thomas van Kortryk for highlighting an error.
4For example, in the case of the quartic see Figure 3 in: Nickalls RWD (2012): The quartic

equation: alignment with an equivalent tetrahedron The Mathematical Gazette, 96, 49–55.
http://www.nickalls.org/dick/papers/maths/tetrahedron2012.pdf

http://www.nickalls.org/dick/papers/maths/tetrahedron2012.pdf
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Cauchy bound. |𝑥| < 1 + 𝑚𝑎𝑥 (|𝑎𝑖|)

Modified Cauchy bound. |𝑥| ≤ 1 + 𝑁

Maclaurin bound. If 𝑘 is the index of the last negative coefficient
in the sequence 𝑎0, . . . , 𝑎𝑛, then

|𝑥| ≤ 1 + 𝑁1/(𝑛−𝑘)

Negative Inverse Sum bound. For each negative coefficient 𝑎𝑚

of 𝑓(𝑥), let 𝑆𝑚 be the sum of all positive coefficients following 𝑎𝑚 in
the sequence 𝑎0, . . . , 𝑎𝑛. Then

|𝑥| ≤ 1 + 𝑚𝑎𝑥

(︂⃒⃒⃒⃒
𝑎𝑚

𝑆𝑚

⃒⃒⃒⃒)︂
Examples

We now give some examples and compare the various bounds. Since the tightness
of the bound is influenced by the number of multiple roots (see (5)), we present
a series of reduced equations having all-real roots, with increasing numbers
of multiple roots up to 𝑛 − 1. The bounds are denoted as Nic (author), Mac
(Maclaurin), NIS (Negative Inverse Sum), Cau (Cauchy) and mCau (modified
Cauchy).
(a) 𝑥5 − 20𝑥3 − 30𝑥2 + 19𝑥 + 30 = 0 (roots: −3, −2, −1, 1, 5),
|𝑥| ≤ 5·7 (Nic), 6·5 (Mac), 31 (NIS), 31 (Cau), 31 (mCau).
(b) 𝑥5 − 24𝑥3 − 26𝑥2 + 87𝑥 + 90 = 0 (roots: −3, −3, −1, 2, 5),
|𝑥| ≤ 6·2 (Nic), 6·1 (Mac), 27 (NIS), 91 (Cau), 27 (mCau).
(c) 𝑥5 − 40𝑥3 − 90𝑥2 + 135𝑥 + 378 = 0 (roots: −3, −3, −3, 2, 7),
|𝑥| ≤ 8 (Nic), 10·5 (Mac), 91 (NIS), 379 (Cau), 91 (mCau).
(d) 𝑥5 − 90𝑥3 − 540𝑥2 − 1215𝑥 − 972 = 0 (roots: −3, −3, −3, −3, 12),
|𝑥| ≤ 12 (Nic), 35·9 (Mac), 1216 (NIS), 1216 (Cau), 1216 (mCau).

Thus, although the Nic bound is exact for polynomials having all-real roots
and 𝑛 − 1 equal roots (example d), the Maclaurin bound will occasionally just
out-perform it when there are fewer than 𝑛−1 equal roots, as shown in example b.
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